

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATIO	N: BACHELOR OF SCIENCE	APPLIED MATHEMATICS AND STATISTICS		
QUALIFICATIO	N CODE: 07BSAM	LEVEL: 7		
COURSE CODE: NUM701S		COURSE NAME: NUMERICAL METHODS 1		
SESSION:	JULY 2023	PAPER: THEORY		
DURATION:	3 HOURS	MARKS: 100		

SUPPLEME	NTARY /SECOND OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINERS	Dr S. N. NEOSSI NGUETCHUE AND G. S. MBOKOMA
MODERATOR:	Prof S. S. MOTSA

INSTRUCTIONS

- 1. Answer ALL the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations. All numerical results must be given using 4 decimals where necessary unless mentioned otherwise.
- 3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Attachments None

Problem 1 [29 marks]

1-1. Consider the equation $f(x) = e^x - x^2 + 16\sin(x) - 5 = 0$.

1-1-1. Show that
$$f(x) = 0$$
 has a unique solution α in $[0,1]$.

- 1-1-2. Use the Bisection method with initial interval [0,1] to find the approximate solution to α at the third iteration.
- 1-2. Write down Newton's algorithm to approximate the root of a continuous function h in [a, b] after n iterations.
- **1-3.** Suppose that $g:[a,b] \to [a,b]$ is continuous on the real interval [a,b] and is a contraction in the sense that there exists a constant $\lambda \in (0,1)$ such that

$$|g(x) - g(y)| \le \lambda |x - y|$$
, for all $x, y \in [a, b]$.

Prove that there exists a unique fixed point in [a, b] and that the fixed point iteration $x_{n+1} = g(x_n)$ converges to it for any $x_0 \in [a, b]$. Also, prove that the error is reduced by a factor of at least λ from each iteration to the next.

Problem 2. [39 marks]

- **2-1.** Write down in details the formulae of the Lagrange and Newton's form of the polynomial that interpolates the set of data points $(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_n, f(x_n))$. [7]
- **2-2.** Use the results in **2-1.** to determine the Lagrange and Newton's form of the polynomial that interpolates the set of data points (1,1), (2,5) and (3,15). [18]
- 2-3. Determine the error term for the formula

$$f'''(x) \approx \frac{1}{2h^3} [3f(x+h) - 10f(x) + 12f(x-h) - 6f(x-2h) + f(x-3h)]$$

[14]

Problem 3. [32 marks]

- **3-1.** State the Improved-Euler's algorithm and indicate its order of accuracy. [4]
- **3-2.** Write down the fourth-order Runge-Kutta (RK4) method's algorithm for the following specific problem after n steps [8]

$$y'(t) = y - t^2 + 1$$
, $y(0) = 2$

3-3. In the kingdom of Bana, king Happi The First asked one of his subjects, a prominent mathematician to solve the above IVP using the fourth-order Runge-Kutta (RK4) method. He displayed the results in the form of the following table and purposely skipped some entries.

k	t_k	k_1	k_2	k_3	k_4	y_k
1	0.08	3.0	3.11840		3.24345	2.24969
2	0.16		3.36502		3.49368	
3		3.49351	3.61885			2.80885
4		3.75125		3.88567	4.01730	
5	0.4		4.15061		4.29200	

Compute only the missing values by the means re-compute them!!).	of the given ones (don't	[20
,		
	TOTAL: 100 marks	
God bless vo	ou !!!	